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ABSTRACT

We expose a consistent theory for dealing with transport
phenomena in many astrophysical conditions. The present paper
gives a more general frame to the classical radiative transfer
theory and some particle transport phenomena. We start with the
kinetic equations and introduce three cases: LTE, partial LTE
(usually called non-LTE), and non-LTE (or fully non-LTE).

We present the fully consistent equations for partial LTE,
and define the transport coefficients (which also hold for LTE)
and show a method for calculating these coefficients as well as
their validity range. The method is based on a numerical

solution of the kinetic equations considering Landau, Boltzmann

and Focker-Planck collision terms.
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I. Introduction

Radiation transport has been thoroughly treated since the
beginning of astrophysical research, as can be seen in, e.qg.,
Athay (1972) and Mihalas (1978), but as a subject independent of
matter transport and assuming that particles follow a Maxwellian
distribution.

On the other hand particle transport phenomena have been
studied without considering the radiation. Two different
situations have been considered, the first corresponds to cases
where particle distribution functions are very close to Maxwell's
function and the second to the case where non-local effects
dominate the distributions.

The particle transport for small departures from Maxwellian
distribution has been analyzed by several authors. The early
work by Chapman, Enskog and Burnett (hereafter CHEB) as discussed
by Chapman and Cowling (1936, hereafter CC), led to a complete
compilation of transport coefficients, definitions and
calculation methods very usefull for atomic and molecular
gases. Their approach is based on expansion of the distribution
functions in the vicinity of the Maxwell distribution function,
then, they retain only the first term in that expansion and in
turn expand again that first order term fl in Laguerre
polinomials up to some order N. An application of the CC methods
to mixtures of gases without considering radiation, is due to
Devoto (1966).

The CHEB method has also been applied to ionized gases, by

Braginskii (1965), but that case requires expansions up to at
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least second order (N=2). The CHEB method was also aplied by
Hochestim (1967) to magnetized plasmas by using expansion up to
order 20,

As an alternative method for calculating the first order
departure from Maxwellian distribution, Spitzer and Harm (1953,
hereafter SH) have calculated, (in the case of a gas composed of
electrons and one ionic species), not only the transport
coefficients, but also the detailed shape of the distributions
function, by a numerical method without restrictions to a
truncated polynomial expansion.

The results by SH have been used extensively in several
fields of physics and also show the limits of validity of the
first order distribution function approach. Those results led to
the analytical approach of Shvarts et al. (198l) for calculating
flux limit coefficients which have been qualitatively confirmed
by experiments. Also an analytical approach was applied by
Campbell (1984) for very simplified cases.

An approach which fits the capabilities of modern
"supercomputers”" has been suqggested by Fontenla (1985) showing
how one can define a set of transport coefficients and calculate
them by numerical methods. A similar method has been used by
Epperlein and Haines (1986) for a fully ionized gas with magnetic
field.

We also mention papers relating to particle transport case
where non-local effects are very important. In that cathegory
the paper by Luciani, Mora and Pellat (1985) assumes a very

simplified kinetic equation and presents an approach to some non-




localized heat flux which arises when the transport becomes non-
local. Calculations of non-local effects have likewise been
carried out by Roussell-Dupree (1980), Shoub (1983) and by Owocki
and Canfield (1986) for the solar transition region.

In the present paper we show the full set of kinetic
equations which have to be considered for a consistent treatement
of both radiation and particle transport phenomena. From these
equations we derive a set of hydrodynamic equations for particles
without any apriori assumption regarding the radiation field or
the distribution functions.

We characterize some different regimes and also define and
explain the definitions of some transport coefficients. The
basis of the numerical method for calculating these transport
coefficients is explained. Then, we show some results in a

simple case and compare with the previously mentioned papers.
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II. The Kinetic Equations

Following the Ehler and Kohler (1977) formalism, and
assuming that all the requirements related to statistics are
satisfied, we describe the macroscopic system by the one particle
distribution function for each of the present species (a).

We consider the phase space composed of the four dimensional
coordinates (x,y,z,ict) and the four dimensional momenta 2
(px,py,pz,iE/c) where i is the imaginary numbers unit, ¢ the
velocity of light, E the total energy; and the other variables
have the usual meaning. For a particle of rest mass m, ]5] = imc
and for photons |§| = 0. Hence, the impulse have only three
independent variables.

Following Ehler and Kohler we write the volume measure in
orbital phase for particles of given rest mass

dw = (B + 4d%) an , (1)

1
where d9 is an space—-time surface element, and d7 the volume
element in four momentum space for that particle. Then,
' dp, dpy dp,

dn = E7C (2)

We have assumed a gas of particles which are essentially
free; i.e., interactions between them are short-lived compared to
the time between such interactions (small range interactions).
The particles are subject to a general field which can include

the autoconsistent field. 1In the case of plasmas, there is also




some permanent interaction between particles, but to the extent
this is small compared to the kinetic energy of the particles, it
only affects the spatial dependence of the distribution function
(leading to Debye screening) and then does not affect the present
work (for more details see e.g., Balescu, 1975).

According to our definitions and assuming summation over
repeated indices, we have the definition of the distribution

function £' according to

= = > ., _ T, >
Ny = fz,m £'dw' = [, d3 « ([ B £ dn') = [z 3+d, (3
where the integral over = means integration over the whole

momentum space, N being the number of particle trajectories which
cross the surface I, and 3 the four-vector current density of the

species., Then if n, is the volume density of the species a

Y

£' dn'_ = in_ . (4)

j4a 1 fw a a a

Redefining £' and dr' in order to work with the state

occupation numbers and the state densities, we write

=h— L '_'.L '. *=§-
f o £'; drm 3 dr'; dm = dr , (5)

=3

resulting in

*
n, = / fad"a



o]

where w is the multiplicity of the state, and h Planck's

constant; Then,

for particles dn* = (ZS+1)(%E)3 Ysezdsdud¢ '
(6)
vo 3,v 2 v
and for photons dn* = 2(—=)"(—) d(5-) dud¢ ,

o] o

where S is the spin, B the velocity in units of the velocity of
light, vy the relativistic correction vy = (1 - 82)—'b§and 8

and ¢ the spherical angles which define the direction of the
vector 5 in the three dimensional space; u = cos 8 is the
projection factor along the z axis and v the photon frequency.
The quantity Vo represents an arbitrary frequency taken to

dimensionalize the variable.

The force is assumed to include gravitational and Lorentz

terms

(3 - B)] , (7)

where 5 is the gravitational acceleration, E and B the electric
and magnetic fields,respectively, e the proton charge and 2 the
charge of particle in units of e.

The Liouville equations (see Ehlers and Kohler 1977) takg

the form in the case of special relativity for particles

8 n, A

+ _—
i 9ax

1 t ap - mcy

Qe

af , Fi | ot 4
5% T



and for photons

n, <.+ 2 8L -5 _ - ¢ | (9)

where n indicates the unit vector in the direction of the impulse
and njy its components, & is the collision density for the
particles considered (g is the invariant collision density) and
we use (as in the following) the convention of summation over
repeated indices.

Eguation (9) applies to cases where the space and time
variations of the distribution functions are negligible through
the range of the forces between particles responsibile of the
collision terms. Another condition required in this approach is
that all fields (5, E and B) are small enough not to affect the
collisions, i.e., they do not produce any noticeable change in
particle impulse during the duration of a collision.

We remark that the collision densities just mentioned are
the sum of all the collision terms between a particle within one
phase space cell (according to the guantum mechanical definition
of states) with all other particles, even those of the same
species. Then these collision densities are integral nonlinear
functions of the distribution functions.

Considering the terms which can be expressed in the
Boltzmann form, for a species with a certain value of the impulse
(within a cell of phase space), namely A, they can be expresed as
a source term which does not depend on f,, but depends on the
other particle (or photon) distribution functions fp, fn, etc.,

and a sink term which is proportional to £, so that
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EA =Ny - foA . (10)
Following Ehlers and Kohler, we adopt the definitions

£ =1 + fA for bosons

(11)

£ =1 - fA for fermions.

Then, for collisions between a particle A and a particle B,
which result in the emission of particles C and D (binary
collisions), where do = ¢ du d¢, is the differential cross-
section in the inertial frame, we have

B

=[] foD f BAB do de* ’

3
[

(12)

[}

[] £5£CEP 8,5 do dry* & n

A L]
The minus sign holds when A's are bosons, and the plus sign when

they are fermions. The expression for Bag is derived from Ehlers

and Kohler's definition of Prg» i.e.

- 2 2 _ 2,2 .2 s
Bag = (BA + 85 ZBABBcos ®.n By By sin eAB)

’ (13)
where SAB is the angle between §A and ﬁB' This expression is
also valid when one of the particles is a photon, in which case

the corresponding BAB will be unity.
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For the conditions prevailing in many astrophysical
situations degeneracy is negligible and £A = 1 for particles.
This simplifies slightly some equations, and if required, the
equations below can be modified to account for degeneracy.

The above considerations regarding Boltzmann collision terms
hold for both elastic and inelastic collisions. Boltzmann type
terms can also account for collisions involving many incident
and/or resultant particles or photons, as for instance
collisional ionization and recombination.

In the case of elastic, binary collisions, if only small
changes in the particles impulses occur after the collision, the
Boltzmann term is not suitable for numerical calculations, since
it involves a large extent of numerical cancellation between the
source and sink terms.

For instance, when a particle A undergoes a collision with a
much lighter particle B or with a photon of moderate frequency
(frequency much smaller than the Compton frequency) the impulse
of particle A changes by only a small amount. The source and
sink terms in the Boltzmann term can be expanded and we obtain

the Focker-Planck collision term (see Balescu 1975), viz.

3 A

Er = 55 (- <Ap;> £, + <AP,AP> W) (14)
A, j

1
where
<AP>=——i-mcf32Df dp,*
i v A AB B “FB
2 2 .3 BABiBABj
= - *
<AP;AP.> = m%c [ 83 [A Si5+ (B -A) ———2] fpdm*,

BAB
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and the coefficients D, A, and B are given by the expressions:

D= [(1 -y )o'du'de' ,

>
([

1ra-u't cranar,
B =/ (1-u")2 o'du'ds’ .

Here o0'du'dé' is the differential cross section in the center of
mass coordinate system (if one of the species is a photon, the

rest frame of the particle is the reference system), and Gij is

the Kronecker delta.

The case of charged particles involves collisions where not
only the impulse of particle A but also that of particle B
changes slightly as a result of the collision. This case is
particularly important for Coulomb type forces since for them the
cross—-section diverges when the deviation angle goes to zero, and
this kind of collisions dominate in normal plasmas.

For Coulomb collisions we use the Landau (1936) form of the

Focker-Planck collision term as shown in Balescu (1975), i.e.

| L6y 5 (p £ - 25 £5)]
g, = G, (ol £, = oo £,)] dn_* , (15)
A P, [ 013'9F,; "B T 3P, A B
with
5 5 “aB, ®aB.
Gy = myc [As;. + (B-A) —5—3] . (16)
8



The expression for derivatives with respect to the

components of impulse can be obtained from the expression

(85, —uny) 3 (ny 8,0 = ndiy)
5t s -2, an
YB(l1 - u7) 3o

mel— = 12
3B

Ip. 3

[
<

YB

where 6ij is the Kronecker delta and n; are the components of the

. > . . >
unit vector n in the direction of p.

By including the explicit formula for the collision terms we

find
oo, E L LOE LT o, 2 (18)
N 7%, c dt c ap, n X i 9p,; '
i i i
where
2
9°f
Df = ¢-- ’
1) 3piapj
n=2In,
B
9<AP.> 3G . of
- j ig °tm .
x =[x+ 55—+ 55 55— dwg*l
B j j "B,
3<AP.AP.> of 3G. .
- _ 1 i® 3 B * ij *
b; = [BP> = 5 ———5——+ [ G y—p— d7y [ 55— fgdmgl
B J Bj Jj
<AP;AP,> .
and iy = g [——-—7—— + [ GijdewB] .

These equations describe the transport of particles and
radiation and take into account the full interaction between

matter and radiation in astrophysical problems, dealing with




medium density gases like the ones that form the stellar
atmospheres.

One of these equations can be simplified for problems where
the photon flight time over a characteristic length is small
compared to the characteristic times for variations of physical
parameters. In the latter case one can neglect the accumulation
of photons in regions of space and drop the term (l/c)((3f/3t),
recovering the ususal radiation transport equation (Athay, 1972).

The basic kinetic equations can also be obtained from the
BBGKY chain of equations by applying statistical assumptions (see

Balescu 1975).
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III. The Hydrodynamic Equations

These equations can be derived from the moments of the
kinetic equations (18) considering only particles (i.e.,
excluding radiation), and differ from some others which include
radiation in the moments of the kinetic equations (see for
example Anderson, 1976). The reason for the present formulation
lies in the fact that for most cases in stellar atmospheres the
radiation spectrum has to be solved in detail, and its agreement
with observations is the main goal.

We define the moments of the collision term €y for the a

particles by
- - - > . = -Y—
R, = [gdr ;i P [mvg am ;e = [m — g dm , (20)

where dna is the impulse phase-space volume element, m, is the
mass of particles of species a, and v is the velocity.
With these definitions, the statistical equilibrium

equations become

ana

it

> >
+ V-(nava) + V'(naU) = Ra' {21)

where n is the number density of a particles, §a their diffusion
velocity, J the fluid velocity (mass center velocity), and R, is
the net rate of creation of a particles per volume unit.

Since mass is conserved in all collisions, the usual mass

conservation equation holds, i.e.
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%% + Ve(ol) = 0, (22)

where p is the mass density.

Taking the first moment of the kinetic equations we find

+ Ve(m) = F + P, (23)

where

and ga is the acceleration experinced by an a particle due to all
external (or autoconsistent) fields. P is the net gain of

particle impulse per volume unit due to inelastic collisions with
photons. The last quantity equals the net loss of photon impulse

and can be expressed in terms of the collisional term for

radiation
B = % (e, 1, = e,) § duadv, (24)

and €_ have their usual

where ¢ is the speed of light, Kyr T,r v

meaning of absorption coefficient, intensity and emissivity of
radiation at frequency v and with direction 5, and dw is the
solid angle element.

As mentioned before, when the photon flight time over a
characteristic length is small, the kinetic equation for photons

gives
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§=%v-fﬁ?1r dw dv , (25)

where % f AN I, du dv the radiation pressure tensor.
The tensor T contains the pressure p, the viscous

stress T (of null trace), and the terms due to diffusion, viz.

RS ELESES AN (26)
where
p = i Pyr Py = % Tr | ma§ w £,47;
and T =3 fa; T =] m wwf dr - pI ,
Q

with the definition w = v - (0 + Ga)' In equation (26) many
authors drop the last term because it is guadratic in Va.

The kinetic energy equation for the gas is

3 2p 4z V“; +v - [fCp +1 zgi)] +
3 2P 7 %2 2P 7 a2
2
+v . (20 3 + Yo ] + (Fe9) ¢« O + Ve(z 7T_« V) +
EVal3 Ry *pq 7))+ (7e7) ¢ U Emgt Vo) +(27)

with € = & €y a I aa and where aa is the conductive energy
a a

flux for a particles, given by



18

a,=f wm, 5 £, dr_. (28)

This definition of conductive flux agrees with the one from
CC since it does not contain the thermal energy flux due to

diffusion
> 3 = >
T [Va(7 Pyt o, =) +1 V], (29)

or £ ¥ % p_ up to first order in ¥ and T.
a a a a
The term U » P is frequently dropped for non-relativistic
cases. Again, the condition for energy balance in collisions

gives

i (e, + R,E)) = / (¢, I, = €,) duw dv, (30)

where Ea is the internal energy per a particle.

There results then

an
a

e = - I Bl

> >
. + 9e(n Vv ) + V'(naU)] + (e I, - €,) dw dv .

By using the previous equations one can easily transform the

thermal energy equation into the entalpy equation.
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IV. Different Regimes

In principle, the system of egs. (18) (in the following
referred to as KE) must be solved simultaneously for all
particles and radiation with specific boundary and initial
conditions which define the problem under consideration.
Furthermore, these equations have to be complemented with
Maxwell's and gravitational field equations.

An inspection of the KE formulas shows that their right hand
member (hereafter RHM) contains only local terms; i.e., the terms
in RHM depend only on the values of the distribution functions at
the specific space—-time coordinates, and the terms in the left
hand member (hereafter LHM) depend on the values of the
distribution functions at other space-time coordinates (non-
local).

The latter terms lead to the definition of the local
thermodynamic equilibrium regime (LTE). This is, when the
absolute value of all the terms in the LHM of all the KE
equations are much smaller than the absolute value of the
dominant terms in the corresponding RHM. In LTE situation, then,
there is a strong cancellation between RHM terms, and the
distributions become mainly locally defined by some thermodynamic
equilibrium functions F (those which null the RHM) of some
thermodynamic parameters (TP).

One complete set of TP is given by (n, ﬁ, T,A) where n is
the total particle density, U the fluid velocity, T the
temperature, and A the set of independent abundances of the

species.
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The case of LTE without considering radiation is analyzed in
many text books which define the hydrodynamic equations (the
equations which define the TP values as functions of space-time
coordinates). 1In particular, Chapman and Cowling (CC) show the
definitions of some transport coefficients and a method for
calculating them. The case of a gas including radiation has been
treated by Anderson (1976) showing some transport coefficients
for a very simplified case.

On the other hand, when in all KE egs. the RHM terms are at
most of the order of magnitude of the LHM terms, we have what we
call non-LTE (or fully non-LTE). In this case one has to use
different approaches for solving the KE eqs. (e.g., Rousell-
Dupree (1980), Shoub (1983) and Owocki and Canfield (1986). 1In
non-LTE cases one can use the hydrodynamic equations (20) to (30)
and define the parameters g, p and T, but they do not have the
general meaning they have in LTE, and they are useful only for
correcting and checking consistency and errors in numerical
methods.

In the non-LTE case the shape of the distribution functions
is defined mainly by the boundary and initial conditions (i.e.
non-locally defined).

Between the two extreme cases there is a wide range of
intermediate cases, which cannot be treated like in LTE, but are
far easier to solve than the non-LTE cases. This range has been
considered for instance by Braginskii (1965) who showed that
sometimes the shape of the distribution functions for different

species can be close to the equilibrium function, but with



21

different values of the TP for each species. This situation has
also been considered by Nakagawa and Wu (1968) who included
radiation.

We shall define a special case in this intermediate range
and call it partial thermodynamic equilibrtium (p-LTE). Oﬁr
definition results from considering the elastic collision terms
in the KE eqs. for certain particles. If these terms are much
larger than the corresponding terms in the LHM and RHM, the
distribution functions for these particles (thermal particles)
are close to some equilibrium functions. We can then take the
moments of KE eqgs. ,integrate them and perform the summation over
the different species leading to the hydrodynamic equations
described in egs. (20) to (30). The latter equations in
conjuction with the KE egs. for the particles not included in the
former (non-thermal particles) and photons constitute a complete
set of equations (if the transport terms (§a, F, 3) 1in the
hydrodynamic equations are known).

We want to stress that while all particle species have
elastic collisions with the same and other species, photons do
not interact with themselves and their relaxation towards the
equilibrium distribution function (or thermalization) is due to
photon-particle interactions (which are inelastic collisions).

In many astrophysical situations the collision terms in the
photons kinetic equations are not much larger than the
corresponding LHM terms. Moreover, frequently in egs. KE for
particles, the order of magnitude of the LHM terms lies between

those of elastic collisions (usually the largest) and inelastic
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collisions (the latter being the responsible for relaxation
towards Saha-Botzmann equilibrium).

The former constitutes a typical p-LTE case, where one can
assume that the shape of particle distribution functions are
close to Maxwellian, due to the strong cancellation of elastic
collisions terms. However, the species densities do not follow
the Saha-Boltzmann formula and the radiation do not follow the
Planck formula.

We write for the thermal particles

n, mcz(Y' - 1) - F.x. + E
f s M =

a a K {41 + expl kT — 0]}‘1' (31)

where k is the Boltzmann constant, K a normalization factor, and
Y' the Lorentz factor in the fluid frame (with velocity J). The
minus sign holds for bosons, and the plus sign for fermions.

One additional advantage of the p-LTE formulation is that
even the equations which one cannot include in the hydrodynamical
egqs., become simpler, since in their RHM the larger terms are
more or less simple functions of the TP instead of complicated
nonlinear integrals. An example is the radiation transport
equations, where the source term (photon emissivity) and the sink

term (absorption coefficient) assume relatively simple

expressions.
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V. The Transport Coefficients

Some terms which appear in the hydrodynamic equations (20)
thru (30) are related to the fluxes of particles and particle

impulses and energies (n ¥ iy

aVa’ Ea) in the fluid rest frame.

af

These terms, as their definitions show, arise due to the
anisotropy of the distribution functions. In the p~LTE case, for
the thermal particles the fluxes are produced by the departure of
the distribution functions from a maxwellian shape. Those
departures (8f) are complicated functions of the LHM of the KE
egs. for the thermal particles, and the collisions with the non-
thermal particles and photons. The moments of the functions §f
or the terms (ﬁa’ ?a' aa) can be tabulated for different
conditions and interpolated for solving the actual problems.

We attempt to show a general method for calculating 6f in p-
LTE situations by uéing an iterative numerical scheme. The
method consists in the application of the multidimensional
Newton-Raphson numerical technique (hereafter NR) to the KE. We
also suggest that this method might be applied for solving some
non-LTE problems, since in many cases this method is successful
in calculating the solutions of non-linear equations. However,
the convergence of the method is not assured in general, and the
method should be explored further to show its possible usefulness
in solving KE eqgs. for typical situations.

In the p~LTE case, it is straightforward to show that the
Newton-Raphson technique (by using the maxwellians M, as starting
point) applied to KE coincides with the analytical expansion and

iterative calculation from CHEB (see CC) for LTE situations.
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There are two possibilities for the application of NR to the
p—-LTE case. The first is to consider KE eqgs. only for thermal
particles and assume as given the distribution functions of non-
thermal particles and photons (fB). We will use here the second
approach of solving the KE egs. for all the particles and
photons, assuming as known, the LHM of all those equations.

As a starting point we take as given the set of functions
M, for the thermal species, as well as some distribution
functions fB for the other species (including photons). The
latter functions are supposed to satisfy their respective KE egs.
with the given Ma.

We first obtain the distribution function fi up to iteration
i (equivalent to order i in the CHEB expansion) and then the next
correction 6fi is computed by linearizing the RHM again.

i i

o £ - &L = :_i:. SEL + ;i_g sel = atee! (32)
where a summation over all kind of particles or photons B is
implied and Ea is the RBM of the KE egs, and A is a matrix
operator. By inverting these equations one can calculate the
functions 6fi and fi + 1. fi + Gfi.

The first iteration in the former procedure shows a solution
for Sfi which is a linear function of the thermodynamic forces
(in the following TF). We mention that due to the enormous

complication of the CHEB analytical equations, at present they

have only been applied to first order (equivalent to our first




-

25

jteration). 1In contrast, the present numerical technique can
easily be applied to higher orders leading to functions 6f (and
hence §a’ ?a’ and aa) which are non linear functions of the TF
and the derivatives of the TF.

Also, in the first iteration, the elastic collisions between
thermal particles cancel in Ei (but not in the derivatives), and
it contains only the terms due to inelastic collisions between
thermal particles and all collisions with non-thermal particles
and photons. From the chosen starting point, Ofg - Eg = 0, and
the fB and then the EAO can be expressed as functions of Ofso.

The thermodynamic forces are in principle derivatives (or
logarithmic derivatives) of the thermodynamic parameters and the
functions fB with respect to the space and time variables, and
the fields (5, £, and 8). However, they can be combined or
expressed in terms of any independent set of variables.

In order to obtain better numerical behavior it is useful to
take advantage on the isotropy of the functions M,- As we will
show, this leads to some simplification in the first iteration.
We suggest in consequence to split all distribution functions
fa and fB in symmetric and antisymmetric parts with respect to
the direction of each spatial coordinate, a direction that in
each case will be designated as the z axis.

If considering then, the domain of u restricted to the

interval (0,1), we have

E(+u) = (£3(u) + £3u)) ,
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and

£(-u) = (£5(u) - £3(w)) ,

The KE equations become

02fS + 0Sf? = Ea
(33)
and OSf£S + 0%f2 = £S,
where the operator O is defined as before,
s a a
F F F
Oa=B“T+ aa . X aa . Y aa
z c P, c Py c py
a s s
F F F
s 139 9 3 z 3 X 9 y 9
0° == — + 8n_ +— + Bn. — + + + .
c dt X ax y ay c apz c apx c apy

It is evident that the terms for the gravitational
acceleration and the electric field forces are symmetric since
they do not depend on particle velocity. On the other hand, the
magnetic field force gives complicated expressions, while the

component along z of its antisymmetric part vanishes

P B P_B

s _ y z, a . _ 29,
Fx mgx + ZeEx + mcy’ Fx mcy '
] Psz a Psz
F = mg_ + ZeE - ; F = ; (34)



At this point, we apply NR to solve egs. (33), we find

Oafls + OSfla = Ela + AlS Gfla + Ala Gfls

(35)

and osfis + Oafia = Eis + pla sfia + pls Gfis'
98

where the matrices A are defined by the derivatives (3fé) as
before. We remark that the corrections apply also for the non-
thermal particles, since their corresponding KE eqgs. are affected
by §f_  to some extent, resulting in fB functions which are
slightly different from fBO (the functions which satisfy the zero
order KE egs).

Equations (35) can be solved numerically by using a
partition of the impulse space and expressing numerically the
derivatives with respect to velocity and angles as well as the
integrals over impulse space.

The equations become greatly simplified in the first

iteration, since for the fluid rest frame (§d = 0),

M P,
a = - 1 M
3Pi mBT a
' (36)
T_“ = M [w . ( p’ _ dlnky 31nT _ P; 3P, auj]
xX; o 3%, 2meT  dlnT’ 3x; mET 30] 3%,

5' being the impulse of the particle in an arbitrary reference

L
frame with velocity g .
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Egqs. (35) become

a _ .a s a a s
o%M_ = £3 + A SE£% + A7 Of

S - S a a S S
oSM_ = £% + A5 8£% + A7 of
0 =0 + AS 682 + A2 5£°

B B

0 =0 + AZ SE2 + Az s£2,

(37)
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VI. The Stationary Plane Parallel Case

We will consider the simple case when all gradients of TP
and all the fields (3, £, B8) are directed along the z axis and
all derivatives with respect to time are zero.

Following eags. (37), we have

3ln(n ) 2,2
a, = a mc“B” _ 3 3lnTy _ BN s
oM, = BuM, 3z + 2KT 2) t 2 ] T Maf2
oSM = mcs 2 u2M 3V,
o kT a 3z °

In these equations one can recognize the classical

thermodynamic forces

_ aln(na)
xn 9z
[s 3
_ 3lnT
Xr = T3z
g
= _2
xz = = (39)
c
Ez
X %
1%
xU c 3z

and the associated functions

a
Q = BuM
n, a
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a mczﬁ2 3
Or = Bu(Tg - 7lM,
Qg = ~-Bu ﬁg M
Q; = -Bu %%3 M,
OS = 82u2 %%3 M-

Then, one can associate to each force a pair of functions

s£2, Gfg which result from the solution of the equations

a _ .Seca A, .S
QbXb—AGE +A5fb

0 = A%s£3 + 7Ss£S

b b '

or (40)

|
=
w
o
h
)
+
=
0]
o
h
/)]

% Xp = b
plus the corresponding equations for non-thermal particles and
photons. The last equations can be eliminated by using them to
calculate the GEB values as functions of Sfa and then replacing
GEB in the egs. for thermal particles.

If one performs numerically the integrals which define the

transport phenomena in the hydrodynamic equations, it is possible
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to define the weights W corresponding to the transport variables

as

v = wd §£2
Q a
a = w2 sf2 (41)
a
- S S
r, = W §€%,

and, one can define the transport coefficients Q,p by one of the

following expressions

-1

- | S _ ,a,s a,-1 _a
Qab = Wa (A ATA A7) Qb
Q. = w2 (A2 AsAa—lAs)-l o2
ab a b

(42)

Q. = wS(AS - AaAs-lAa)-l of
ab b
Q. = wS(a? - AsAa—lAs)—l 02
ab a h’

a being the index related to the flux~considered, and b the index
related to the thermodynamic force involved.

The present method shows a numerical way of calculating
these classical transport coefficients. Moreover, it shows how
to define and calculate some new coefficients which appear due to
the interaction of thermal particles with non-thermal particles

and with photons.
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Let us consider the photons, and to be consistent with the
actual situation assume that their distribution function f
depends only on z and u.

We will assume they interact with particles through

Boltzmann type binary c¢ollisions, hence

(43)

For simplicity we consider a gas in which there are not non-
thermal species, since at zero order the coefficients X, and n,

are symmetric; it results

a£OS _ s .o0a
W=z © Xy £,
a£°2 (44)
v _ .S _ S fos
H 3z nv Xy Ly 1

which is the Feautrier form of the radiative transfer equations.
. . . oa os
In principle, by using egs. (44) all the fv and fv
functions can be expressed as functions of some thermodynamic

forces, which we define as

os
< _ 3ln fv
iv 3z
oa
« _ aln fv

2v 3z
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where
oa _ _ _u os
£, B S £, X1y
Xy
s
os _ vV _ u oa
and fv S s £ X2v'
Xy Xy

One general characteristic of the equations for thermal
particles is seen directly in the present context, viz. goa
depends only on Xyy since all initial distribution functions are
symmetric, except that for the photons. Moreover, since only
one-photon processes are considered, that term is linear in X1y

and can be expressed as

s
X

ca _ S o0a _ _ A 0s

ST xa fy T BT Xy (46)
Xy

XZ being some coefficient dependent on the M,
This leads to the definition of the transport coefficients

associated with the radiation flux, according to

- w@raS _ aa,s-l,a,-1 .a
Qal\) = Wa(A ACA A7) le
with (47)
xs
a _ A os
0.1\,— —— fv
x\)

X3
(a simple expression for xi can be obtained from 3§é).
v

To analyze the coefficients associated with the force Xogyr
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one can assume that the inelastic collision term can be written

as
os S S cOSs
ta < na txp £y

where n: and xi are coefficients depending on M,.

From this, we have

Xs ns ns
os _ _ A oa s(v _ A
A = u—— £y Xy * xA( ) S ). (48)
v Xv A

The last equation gives the definition of two sets of

coefficients, one associated with the force sz

-1
— S /.S a,s a,-1 s
naZv = Wa(A ATA AT) QZV
xs (49)
s _ A oa
Ozv— =3 N
v
and the second set associated with a third radiation force
s s
n n
= J S e _ Vv
X3y = XglZ— = =5) » (50)
xa X\)

where ni and xi are the values of nz and xz integrated over the

impulse space. The corresponding Q is
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AN
] - S
oS = Xa  Xa Xy
SR M
[ - <]
XQ X\)

Considering the case where the elastic collision terms are
much larger than the inelastic ones, and using egs. (40), we can
distinguish between two types of forces, those for which the
associated O is antisymmetric and those for which Q is
symmetric. The analysis shows that for antisymmetric forces the
correction §£° is of higher order than Sfa, and the opposite

holds for the symmetric forces. Following these considerations,

one can write

-1

_ . ,S a

Qab =Wy A %

a s ! a

qu = wq A Qb (51)

-1

_ .S ,S s

Qrp = Wp A7 Oy

and then, up to the first iteration the diffusion velocities and
thermal conductive flux can be expressed as the summation of the
product of some transport coefficients by the antisymmetric

thermodynamic forces, and the stress tensor becomes linear in the

symmetric thermodynamic forces.
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ViI. Conclusions

We have presented the system of kinetic equations for a gas
of particles and photons taking into account different forms of
the collision terms.

From these equations we developed the hydrodynamic equations
for the particles in a non-relativistic case without making
assumptions regarding the distribution functions. These
equations contain the fluxes of particles and particle impulses
and energies in some linear and non-linear terms.

The latter equations are useful in any situation, in LTE and
p-LTE by making the equations to be solved simpler and even in
the non-LTE case for checking the accurracy and consistency of
the results obtained by numerical methods.

We described a numerical method for calculating the
departure from maxwellian of the distribution function of the
thermal particles in the p-LTE situation (the solution obtained
also applies to LTE), and show that to first order it is linear
in certain thermodynamic forces which we defined.

From this departure one can calculate numerically the fluxes
previously mentioned and then the transport coefficients we
defined. These coefficients can be combined and compared with
those defined by CC. They can also be used straightforwardly to
calculate the fluxes of particles and thermal energy.

From the present expressions some coefficients are defined
which are new in astrophysics although well known in other areas
of physics, namely those which describe the effects of radiation

or non—thermal particles on thermal particles.
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Furthermore, one obtains the detailed shape of the first
order departure from maxwellian £ and one is able to perform the
next iteration (for given values of the thermodynamic forces)
obtaining f(z).

By comparing 6fa with Ma and GfB with fB one can check the
validity of the hypothesis regarding the smallness of the
departures and then the range of validity of the transport
coefficients.

As an example we show in Figs 1 and 2 the values computed
for f/(MuX) for some simple model gases, fully ionized hydrogen
(Fig. 1), and rigid spheres (Fig. 2) under some thermodynamic
forces.

In these figs. one sees that for a given value of X, at some
velocity (dependent upon the value of X) Gfa becomes comparable
with M,- Consequently, for velocities greater than a certain
critical value (Bc), the first order approach does not hold and
important departures from maxwellian can be expected, i.e. those
particles with velocities greater than Bc must be considered as
non-thermal particles. If the value of Bc is large enough

(l’t\C2

-1
(Bc >> 8 7ET) 72 ), most of the particles are thermal and

T =
the high velocity particles form the so called non-thermal tail
of the distribution.

The last case can be treated as a p-LTE case, but even when
the non-thermal tail contains few particles, they are very
energetic and can produce important effects (for instance in the

jonization of some elements as was shown by Rousell-Dupree,

1980).
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In another paper we will publish results already obtained by
applying the present method to a partially ionized hydrogen gas,
accounting for radiation in the Lyman continum.

The inclusion of important magnetic fields (those which can
affect the transport coefficients) requires a careful
consideration of all the collision terms in the presence of the
curved trajectories of charged particles, and seems to be a very
important but difficult topic, especially for partially ionized

gases.
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FIGURE CAPTIONS

The departure from maxwellian (6£3/uM) of the
electrons (full line) and protons (dashed line)
distribution functions in a gas composed by electrons
and protons, for unit logarithmic gradient of the

pressure (X; = 1 em™ 1y,

The same as Fig. la but for unit logarithmic gradient
of the temperature (at constant pressure) (XT =

1 cm_l). The dash-dot line shows the SH results

The same as Fig. lb but for unit electric force (Xp =

1 em~ 1),

The same as Fig. la but for unit radiation force (X =
1 cm—l) assuming radiation of wavelength between 912 A
and 304 A of mean intensity J, = WB, (TR) (Bv being

the Planck function). The values were taken as W = 1,

TR = 10,000 K, and the logarithmic gradient of W equal

1 em~ L.

The departure from maxwellian (€2 /uM) in a gas
composed by rigid spheres for unit logarithmic

gradient of the pressure (Xp =1 em~1).

The same as Fig. 2a but for unit logarithmic gradient
of the temperature (assuming constant pressure) (XT =

1 cm'l).




